Identification of damages in a concrete beam: a modal analysis based method

Author:

Cosoli G.,Martarelli M.,Mobili A.,Tittarelli F.,Revel G.M.

Abstract

Abstract Structural Health monitoring (SHM) strategies can play a pivotal role in the perspective of enhancing structures and infrastructures life cycle and maintenance operations. A plethora of sensors and technologies can be employed in this field; in a seismic context, vibrational tests are particularly relevant, being able to give an insight on the dynamic characteristics of the structure itself. In particular, modal parameters can be considered in order to detect damages. A comparison between a certain test time and 0 test time (i.e., undamaged structure) is commonly performed; to this aim numerical models result particularly useful to provide baseline data (often unavailable in pre-existing structures), but they need to be validated before use. Non-contact techniques, like scanning laser Doppler vibrometry, can be exploited to do this. In this paper a numerical model of a scaled concrete beam is realized and validated through LDV data, then it is used to design load tests for progressive damages generation. Modal analysis is conducted after different load trials to evaluate changes of modal parameters in relation to the damage occurred; also, damage-related indices are proposed. The results confirmed the suitability of LDV for dynamic analyses of cement-based structures and this can be particularly useful when big structures (e.g., bridges) have to be monitored in-field. The numerical model was validated with acceptable absolute errors in terms of natural frequencies (between 26 Hz and 131 Hz) and high Modal Assurance Criterion (MAC) values (0.85-0.93). Moreover, the proposed methodology allows to detect damages also in a concise way through synthetic indices (with changes >50% in damaged vs undamaged conditions) and early warnings could be generated according to their values, hence supporting decision-making procedures in the building management scenario.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3