Semi-physical Simulation Model for Leakage of Prediction Aviation Pipeline

Author:

Ye Xiangrui,Luo Bin,Deng Lichuan

Abstract

Abstract The high stability and tightness of modern aviation hydraulic pipelines require them to have a very low leakage rate under variable pressure environments. Once the leakage of the hydraulic pipeline is likely to cause an irreversible air disaster. Flaring straight pipe joint is one of the most widely used in aircraft hydraulic pipelines. The establishment of the simulation model is an effective method to accurately predict the annular gap leakage of the pipe joint. The ring gap of the pipe joint is located inside the threaded sleeve, which cannot be directly observed. The existing leakage prediction methods usually only focus on the microscopic interface contact and ignore the leakage prediction of real complex structures. Therefore, this article is based on ideas, semi-physical simulation through experimental data calibration tightening torque and annular gap width and the mathematical relationship between void ratio, and then established the flaring type straight pipe joint circular aperture leakage prediction simulation model, the ability to different tightening torque and hydraulic pressure conditions for predicting the pipe joint leakage rate, finally, the simulation experiments have been carried out to verify prediction model, The validity of this method is proved.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference14 articles.

1. Evaluation of Pipeline Sealing Performance of Aircraft Hydraulic System Based on Finite Element Calculation Agent;Xia;Lubrication Engineering,2021

2. Evaluation Analysis on Leakage Performance for Beam Seal with Two Sealing Areas;Yu;IEEE Access,2022

3. Elastic contact mechanics: Percolation of the contact area and fluid squeeze-out;Persson;European Physical Journal E.,2012

4. An Experimental Study of the Leakage Mechanism in Static Seals;Zhang;Applied Sciences-Basel,2018

5. Fractal modeling of fluidic leakage through metal sealing surfaces;Zhang;Aip Advances,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3