A Conceptual Framework for Immersive Acoustic Auralisation: Investigating the Key Attributes

Author:

Khairul Anuar F N,Sulaiman R,Che Din N,Abdul Razak A S

Abstract

Abstract In architectural acoustics, the assessment of sound propagation in interior and/or environmental conditions has now become progressively more prominent throughout the past few decades, as a response to the development of advanced prediction tools. Within the adaptation of virtual reality (VR) systems, it is necessary to considerably expedite the prediction and simulation software as well as to enable flexible and responsive data analysis during simulation and 3D audio sensory projection. To generate ideal immersion in a simulated virtual environment, the generated stimulus across all senses should therefore be coherent. Accordingly, in the domain of acoustic in virtual reality, the system sound simulation must be constructed efficiently in order to convey the auditory stimuli to the user in an appropriate manner. This necessitates the implementation of virtual reality system as an advanced prediction tool that can accurately anticipate and replicate realistic audio experiences. Therefore, this study explores the realm of acoustic virtual reality (AVR) through a critical review with the purpose of elucidating design attributes and determining factors in generating immersive acoustic VR experiences. In light of these findings, the aim of this paper is to develop a comprehensive conceptual framework that will serve as a beneficial guide and road map for future researchers and developers in the field.

Publisher

IOP Publishing

Reference55 articles.

1. Integration of daylighting simulation software in architectural education;Sabry;EG-ICE 2010 - 17th International Workshop on Intelligent Computing in Engineering,2019

2. Investigation of physiological differences between immersive virtual environment and indoor environment in a building;Yeom;Indoor and Built Environment,2019

3. Virtual reality for architectural acoustics;Vorländer;J Build Perform Simul,2015

4. Multisensory Identification of Natural Objects in a Two-Way Crossmodal Priming Paradigm;Schneider;Exp Psychol,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3