Computational fluid dynamic study on design and modification of underwater remotely operated vehicle

Author:

Mayo Sohaib Arshad,Shi Xindong,Hu Qiao

Abstract

Abstract Remotely Operated Vehicle (ROV) has been widely used in numerous underwater exploration applications such as exploration of complex deep sea environment, pipeline detection, installation, maintenance, and repair. Thus, it is worthy to design, optimize, and performance evaluation of ROV systems for underwater exploration purposes. Computational Fluid Dynamic (CFD) is a computational approach that is very helpful and widely used to examine the flow characteristics of ROV systems. In this research work, CFD analyses of ROV bodies with different thruster blades were carried out in order to generate thrust forces by the thruster blades. For this purpose, ANSYS FLUENT was used to examine the flow characteristics over the ROV body. The analyses were performed at different flow velocities, such as 1 m/s, 1.5 m/s, 2 m/s, 2.5 m/s, 3 m/s and 3.5 m/s. The outcomes were in the form of thrust force, drag force, pressure distribution, and velocity distribution. The result shows that four-blade thruster generates maximum thrust force as compare to other ROV thruster models. The main reason behind this higher thrust force is due to the larger motion of the fluid. Similarly, drag force was also investigated and observed that the drag force is greater for thruster model 3, having four blades due to the large frontal area of the ROV body and thruster blades. The results obtained in this study are very helpful for engineers and researchers to design and optimize ROV models using numerical methods.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3