Machine learning for predicting laser ablation groove characteristics in polycrystalline diamond

Author:

Tan Ruiwang,Yu Zhanjiang,Li Yiquan,Xu Jinkai

Abstract

Abstract This paper explores machine learning’s role in predicting laser-machined micro-groove texture on Polycrystalline Diamond (PCD) surfaces. PCD has been used for manufacturing ideal cutting insert due to its exceptional attributes, including hardness and thermal conductivity. Surface micro-texturing enhances accuracy and tool lifespan through micro-textures on tool surfaces. Laser micromachining, especially for its precision and efficiency, stands out among methods. Six regression models—Elastic Net, Random Forest, Gradient Boosting Regression, XGBoost Regression, Bayesian Regression, and Gaussian Process Regression—are used to predict groove depth and width based on laser parameters like energy, defocus, and speed. Experiments involve a nanosecond laser system and a commercial PCD tool. Results indicate both Gradient Boosting and XGBoost excel in predicting micro-groove texture. XGBoost slightly outperforms, credited to its enhancements over Gradient Boosting. This paper concludes that machine learning models, especially XGBoost and Gradient Boosting, effectively forecast micro-groove features on laser-machined PCD surfaces, offering insights for further research and practical applications in this domain.

Publisher

IOP Publishing

Reference8 articles.

1. Preparation technology and properties of microtexture diamondcoated tools;Xiang;International Journal of Refractory Metals and Hard Materials,2018

2. State of the art of tool texturing in machining;Alisson;Journal of Materials Processing Technology,2021

3. An integrated multi response Taguchi-neural network robust data envelopment analysis model for CO2 laser cutting;Alizadeh,2019

4. Optimization of laser cutting parameters for Al6061/SiCp/Al2O3 composite using grey based response surface methodology (GRSM), Meas;Adalarasan,2015

5. Experimental investigations of channel profile and surface roughness on PMMA substrate for microfluidic devices with mathematical modelling;Anjum;Optik (Stuttg),2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3