Author:
Marepally Koushik,Su Jung Yong,Baeder James,Vijayakumar Ganesh
Abstract
Abstract
An artificial neural network based reduced order model (ROM) is developed to predict the load coefficients and performance of wind turbine airfoils. The model is trained using a representative database of 972 wind turbine airfoil shapes generated by perturbing the design parameters in each of 12 baseline airfoils defining commercially relevant modern wind turbines. The predictions from our ROM show excellent agreement with the CFD data, with a 99th percentile maximum errors of 0.03 in lift-coefficient, 2 in lift-to-drag ratio and 0.002 in pitching moment coefficient. A Monte-Carlo based uncertainty quantification (UQ) and global sensitivity analysis (GSA) framework is developed using this computationally economical ROM. Using UQ, we observed the stall behavior to be very sensitive to geometric uncertainty, with more than 10% deviation in lift coefficient associated to 5% deviation in geometric features. Sobol’s analysis is used to identify the most influencing geometric feature for the stall behavior to be concentrated at the maximum thickness location on the airfoil suction surface.
Subject
General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献