Integrating COAWST and OpenFAST for wind turbine loading

Author:

Vemuri Adithya,Porchetta Sara,Munters Wim,Gebel Jakob,Nejad Amir,Helsen Jan,Van Beeck Jeroen

Abstract

Abstract Modern research endeavors in wind energy have been increasingly focused on achieving accurate representations of wind turbine loading across diverse atmospheric conditions. Recent advancements in numerical weather prediction techniques make it possible to downscale weather conditions for operational use, underscoring the importance of including air-sea interactions using models such as the Coupled-Ocean-Atmosphere-Wave-Sediment Transport model to improve wind energy predictions. Nevertheless, challenges of high computational costs, the elusive ”gray zone” in simulations, and creating accurate wind turbine digital twins for predictive modeling remain. The current research addresses this challenge by proposing a novel modeling framework integrating the COAWST model with the OpenFAST aeroelastic solver. The current research strives to bridge the gap between the different dynamic regimes involved under diverse atmospheric conditions to achieve real-world representative wind turbine loading. Therefore, a scaled wind turbine model is implemented in the OpenFAST aeroelastic solver. Further, this research tests and discusses the proposed model framework’s capabilities and limitations under extreme weather phenomena.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3