Travelling pulses on three spatial scales in a Klausmeier-type vegetation-autotoxicity model

Author:

Carter Paul,Doelman Arjen,Iuorio Annalisa,Veerman FritsORCID

Abstract

Abstract Reaction-diffusion models describing interactions between vegetation and water reveal the emergence of several types of patterns and travelling wave solutions corresponding to structures observed in real-life. Increasing their accuracy by also considering the ecological factor known as autotoxicity has lead to more involved models supporting the existence of complex dynamic patterns. In this work, we include an additional carrying capacity for the biomass in a Klausmeier-type vegetation-water-autotoxicity model, which induces the presence of two asymptotically small parameters: ɛ, representing the usual scale separation in vegetation-water models, and δ, directly linked to autotoxicity. We construct three separate types of homoclinic travelling pulse solutions based on two different scaling regimes involving ɛ and δ, with and without a so-called superslow plateau. The relative ordering of the small parameters significantly influences the phase space geometry underlying the construction of the pulse solutions. We complement the analysis by numerical continuation of the constructed pulse solutions, and demonstrate their existence (and stability) by direct numerical simulation of the full partial differential equation model.

Funder

ERC

Istituto Nazionale di Alta Matematica

National Science Foundation

European Research Council

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3