Computer-aided patterning of PCL microspheres to build modular scaffolds featuring improved strength and neovascularized tissue integration

Author:

Salerno AurelioORCID,Palladino Antonio,Pizzoleo Carmela,Attanasio Chiara,Netti Paolo Antonio

Abstract

Abstract In the past decade, modular scaffolds prepared by assembling biocompatible and biodegradable building blocks (e.g. microspheres) have found promising applications in tissue engineering (TE) towards the repair/regeneration of damaged and impaired tissues. Nevertheless, to date this approach has failed to be transferred to the clinic due to technological limitations regarding microspheres patterning, a crucial issue for the control of scaffold strength, vascularization and integration in vivo. In this work, we propose a robust and reliable approach to address this issue through the fabrication of polycaprolactone (PCL) microsphere-based scaffolds with in-silico designed microarchitectures and high compression moduli. The scaffold fabrication technique consists of four main steps, starting with the manufacture of uniform PCL microspheres by fluidic emulsion technique. In the second step, patterned polydimethylsiloxane (PDMS) moulds were prepared by soft lithography. Then, layers of 500 µm PCL microspheres with geometrically inspired patterns were obtained by casting the microspheres onto PDMS moulds followed by their thermal sintering. Finally, three-dimensional porous scaffolds were built by the alignment, stacking and sintering of multiple (up to six) layers. The so prepared scaffolds showed excellent morphological and microstructural fidelity with respect to the in-silico models, and mechanical compression properties suitable for load bearing TE applications. Designed porosity and pore size features enabled in vitro human endothelial cells adhesion and growth as well as tissue integration and blood vessels invasion in vivo. Our results highlighted the strong impact of spatial patterning of microspheres on modular scaffolds response, and pay the way about the possibility to fabricate in silico-designed structures featuring biomimetic composition and architectures for specific TE purposes.

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3