A handheld bioprinter for multi-material printing of complex constructs

Author:

Pagan Erik,Stefanek Evan,Seyfoori AmirORCID,Razzaghi MahmoodORCID,Chehri Behnad,Mousavi Ali,Arnaldi Pietro,Ajji Zineb,Dartora Daniela Ravizzoni,Dabiri Seyed Mohammad Hossein,Nuyt Anne Monique,Khademhosseini AliORCID,Savoji HoumanORCID,Akbari MohsenORCID

Abstract

Abstract In situ bioprinting—the process of depositing bioinks at a defected area, has recently emerged as a versatile technology for tissue repair and restoration via site-specific delivery of pro-healing constructs. The ability to print multiple materials in situ is an exciting approach that allows simultaneous or sequential dispensing of different materials and cells to achieve tissue biomimicry. Herein, we report a modular handheld bioprinter that deposits a variety of bioinks in situ with exquisite control over their physical and chemical properties. Combined stereolithography 3D printing and microfluidic technologies allowed us to develop a novel low-priced handheld bioprinter. The ergonomic design of the handheld bioprinter facilitate the shape-controlled biofabrication of multi-component fibers with different cross-sectional shapes and material compositions. Furthermore, the capabilities of the produced fibers in the local delivery of therapeutic agents was demonstrated by incorporating drug-loaded microcarriers, extending the application of the printed fibers to on-demand, temporal, and dosage-control drug delivery platforms. Also, the versatility of this platform to produce biosensors and wearable electronics was demonstrated via incorporating conductive materials and integrating pH-responsive dyes. The handheld printer’s efficacy in generating cell-laden fibers with high cell viability for site-specific cell delivery was shown by producing single-component and multi-component cell-laden fibers. In particular, the multi-component fibers were able to model the invasion of cancer cells into the adjacent tissue.

Funder

Canadian Foundation for Innovation

Terasaki Institute for Biomedical Innovation

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes for Health research

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3