3D bioprinting of tyramine modified hydrogels under visible light for osteochondral interface

Author:

Senturk Efsun,Bilici CigdemORCID,Afghah FerdowsORCID,Khan ZaeemaORCID,Celik Suleyman,Wu ChengtieORCID,Koc BahattinORCID

Abstract

Abstract Recent advancements in tissue engineering have demonstrated a great potential for the fabrication of three-dimensional (3D) tissue structures such as cartilage and bone. However, achieving structural integrity between different tissues and fabricating tissue interfaces are still great challenges. In this study, an in situ crosslinked hybrid, multi-material 3D bioprinting approach was used for the fabrication of hydrogel structures based on an aspiration-extrusion microcapillary method. Different cell-laden hydrogels were aspirated in the same microcapillary glass and deposited in the desired geometrical and volumetric arrangement directly from a computer model. Alginate and carboxymethyl cellulose were modified with tyramine to enhance cell bioactivity and mechanical properties of human bone marrow mesenchymal stem cells-laden bioinks. Hydrogels were prepared for extrusion by gelling in microcapillary glass utilizing an in situ crosslink approach with ruthenium (Ru) and sodium persulfate photo-initiating mechanisms under visible light. The developed bioinks were then bioprinted in precise gradient composition for cartilage-bone tissue interface using microcapillary bioprinting technique. The biofabricated constructs were co-cultured in chondrogenic/osteogenic culture media for three weeks. After cell viability and morphology evaluations of the bioprinted structures, biochemical and histological analyses, and a gene expression analysis for the bioprinted structure were carried out. Analysis of cartilage and bone formation based on cell alignment and histological evaluation indicated that mechanical cues in conjunction with chemical cues successfully induced MSC differentiation into chondrogenic and osteogenic tissues with a controlled interface.

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimaterial Hydrogel 3D Printing;Macromolecular Materials and Engineering;2023-10-28

2. Fabrication of alginate‐based hydrogel microparticle via ruthenium‐catalyzed photocrosslinking;Journal of Biomedical Materials Research Part A;2023-10-25

3. Embedded 3D Printing of Cryogel-Based Scaffolds;ACS Biomaterials Science & Engineering;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3