Current biofabrication methods for vascular tissue engineering and an introduction to biological textiles

Author:

Kawecki FabienORCID,L’Heureux NicolasORCID

Abstract

Abstract Cardiovascular diseases are the leading cause of mortality in the world and encompass several important pathologies, including atherosclerosis. In the cases of severe vessel occlusion, surgical intervention using bypass grafts may be required. Synthetic vascular grafts provide poor patency for small-diameter applications (< 6 mm) but are widely used for hemodialysis access and, with success, larger vessel repairs. In very small vessels, such as coronary arteries, synthetics outcomes are unacceptable, leading to the exclusive use of autologous (native) vessels despite their limited availability and, sometimes, quality. Consequently, there is a clear clinical need for a small-diameter vascular graft that can provide outcomes similar to native vessels. Many tissue-engineering approaches have been developed to offer native-like tissues with the appropriate mechanical and biological properties in order to overcome the limitations of synthetic and autologous grafts. This review overviews current scaffold-based and scaffold-free approaches developed to biofabricate tissue-engineered vascular grafts (TEVGs) with an introduction to the biological textile approaches. Indeed, these assembly methods show a reduced production time compared to processes that require long bioreactor-based maturation steps. Another advantage of the textile-inspired approaches is that they can provide better directional and regional control of the TEVG mechanical properties.

Funder

Agence Nationale pour la Recherche

Initiative for Excellence of the University of Bordeaux

Conseil Régional Aquitaine

European Research Council

Fondation pour la Recherche Médicale

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3