Thin and stretchable extracellular matrix (ECM) membrane reinforced by nanofiber scaffolds for developing in vitro barrier models

Author:

Youn Jaeseung,Hong Hyeonjun,Shin Woojung,Kim Dohui,Kim Hyun Jung,Kim Dong SungORCID

Abstract

Abstract An extracellular matrix (ECM) membrane made up of ECM hydrogels has great potentials to develop a physiologically relevant organ-on-a-chip because of its biochemical and biophysical similarity to in vivo basement membranes (BMs). However, the limited mechanical stability of the ECM hydrogels makes it difficult to utilize the ECM membrane in long-term and dynamic cell/tissue cultures. This study proposes a thin but robust and transparent ECM membrane reinforced with silk fibroin (SF)/polycaprolactone (PCL) nanofibers, which is achieved by in situ self-assembly throughout a freestanding SF/PCL nanofiber scaffold. The SF/PCL nanofiber-reinforced ECM (NaRE) membrane shows biophysical characteristics reminiscent of native BMs, including small thickness (<5 μm), high permeability (<9 × 10−5 cm s−1), and nanofibrillar architecture (∼10–100 nm). With the BM-like characteristics, the nanofiber reinforcement ensured that the NaRE membrane stably supported the construction of various types of in vitro barrier models, from epithelial or endothelial barrier models to complex co-culture models, even over two weeks of cell culture periods. Furthermore, the stretchability of the NaRE membrane allowed emulating the native organ-like cyclic stretching motions (10%–15%) and was demonstrated to manipulate the cell and tissue-level functions of the in vitro barrier model.

Funder

LG Yonam Foundation

Technology Impact Award of the Cancer Research Institute

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3