Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting

Author:

Bilici Çiğdem,Tatar Asena G,Şentürk Efsun,Dikyol CanerORCID,Koç BahattinORCID

Abstract

Abstract Recent studies on three-dimensional (3D) bioprinting of cell-laden gelatin methacryloyl (GelMA) hydrogels have provided promising outcomes for tissue engineering applications. However, the reliance on the use of photo-induced gelation processes for the bioprinting of GelMA and the lack of an alternative crosslinking process remain major challenges for the fabrication of cell-laden structures. Here, we present a novel crosslinking approach to form cell-laden GelMA hydrogel constructs through 3D embedded bioprinting without using any external irradiation that could drastically affect cell viability and functionality. This approach consists of a one-step type of crosslinking via bisulfite-initiated radical polymerization, which is combined with embedded bioprinting technology to improve the structural complexity of printed structures. By this means, complex-shaped hydrogel bio-structures with cell viability higher than 90% were successfully printed within a support bath including sodium bisulfite. This study offers an important alternative to other photo-induced gelation processes to improve the bio-fabrication of GelMA hydrogel with high cell viability.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3