A covariant tapestry of linear GUP, metric-affine gravity, their Poincaré algebra and entropy bound

Author:

Farag Ali AhmedORCID,Wojnar AnetaORCID

Abstract

Abstract Motivated by the potential connection between metric-affine gravity and linear generalized uncertainty principle (GUP) in the phase space, we develop a covariant form of linear GUP and an associated modified Poincaré algebra, which exhibits distinctive behavior, nearing nullity at the minimal length scale proposed by linear GUP. We use three-torus geometry to visually represent linear GUP within a covariant framework. The three-torus area provides an exact geometric representation of Bekenstein’s universal bound. We depart from Bousso’s approach, which adapts Bekenstein’s bound by substituting the Schwarzschild radius ( r s ) with the radius (R) of the smallest sphere enclosing the physical system, thereby basing the covariant entropy bound on the sphere’s area. Instead, our revised covariant entropy bound is described by the area of a three-torus, determined by both the inner radius r s and outer radius R where r s R due to gravitational stability. This approach results in a more precise geometric representation of Bekenstein’s bound, notably for larger systems where Bousso’s bound is typically much larger than Bekensetin’s universal bound. Furthermore, we derive an equation that turns the standard uncertainty inequality into an equation when considering the contribution of the three-torus covariant entropy bound, suggesting a new avenue of quantum gravity.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3