Effective-one-body numerical-relativity waveform model for eccentric spin-precessing binary black hole coalescence

Author:

Liu Xiaolin,Cao ZhoujianORCID,Zhu Zong-Hong

Abstract

Abstract Waveform models are important to gravitational wave data analysis. People recently pay much attention to the waveform model construction for eccentric binary black hole (BBH) coalescence. Several effective-one-body (EOB) Numerical-Relativity waveform models of eccentric BBH coalescence have been constructed. But none of them can treat orbit eccentricity and spin-precessing simultaneously. The current paper focuses on this problem. The authors previously have constructed waveform model for spin-aligned eccentric BBH coalescence SEOBNRE. Here we extend such waveform model to describe eccentric spin-precessing BBH coalescence. We calculate the 2PN orbital radiation-reaction forces and the instantaneous part of the decomposed waveform for a general spinning precessing BBH system in EOB coordinates. We implement these results based on our previous SEOBNRE waveform model. We have also compared our model waveforms to both SXS and RIT numerical relativity waveforms. We find good consistency between our model and numerical relativity. Based on our new waveform model, we analyze the impact of the non-perpendicular spin contributions on waveform accuracy. We find that the non-perpendicular spin contributions primarily affect the phase of the gravitational waveforms. For the current gravitational wave detectors, this contribution is not significant. The future detectors may be affected by such non-perpendicular spin contributions. More importantly our SEOBNRE waveform model, as the first theoretical waveform model to describe eccentric spin-precessing BBH coalescence, can help people to analyze orbit eccentricity and spin precession simultaneously for gravitational wave detection data.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3