Ar transport and blister growth kinetics in titania-doped germania-based optical coatings

Author:

Lalande Émile,Davenport Aaron,Marchand Lory,Markosyan Ashot,Martinez Daniel,Paolone AnnalisaORCID,Rezac Michael,Bazzan MarcoORCID,Chicoine MartinORCID,Colaux Julien LORCID,Coulon Matthieu,Fejer Martin M,Lussier Alexandre W,Majorana Ettore,Martinu LudvikORCID,Menoni CarmenORCID,Michel ChristopheORCID,Ricci FulvioORCID,Schiettekatte FrançoisORCID,Shcheblanov Nikita,Smith Joshua RORCID,Teillon Julien,Terwagne Guy,Vajente GabrieleORCID

Abstract

Abstract Blistering is a phenomenon sometimes observed in sputtered-deposited thin films but seldom investigated in detail. Here, we consider the case of titania-doped germania (TGO)/silica multilayers deposited by ion beam sputtering. TGO is a candidate as high refractive index material in the Bragg mirrors for the next iteration of gravitational waves detectors. It needs to be annealed at 600 C for 100 h in order to reach the desired relaxation state. However under some growth conditions, in 52-layer TGO/silica stacks, blistering occurs upon annealing at a temperature near 500 C, which corresponds to the temperature where Ar desorbs from TGO. In order to better understand the blistering phenomenon, we measure the Ar transport in single layers of TGO and silica. In the case of < 1 µm-thick TGO layers, the Ar desorption is mainly limited by detrapping. The transport model also correctly predicts the evolution of the total amount of Ar in a 8.5 µm stack of TGO and silica layers annealed at 450 C, but in that case, the process is mainly limited by diffusion. Since Ar diffusion is an order of magnitude slower in TGO compared to silica, we observe a correspondingly strong accumulation of Ar in TGO. The Ar transport model is used to explain some regimes of the blisters growth, and we find indications that Ar accumulation is a driver for their growth in general, but the blisters nucleation remains a complex phenomenon influenced by several other factors including stress, substrate roughness, and impurities.

Funder

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Fonds de recherche du Québec - Nature et technologies

Ministère des relations internationales et de la Francophonie

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3