Monitoring the evolution of optical coatings during thermal annealing with real-time, in situ spectroscopic ellipsometry

Author:

Colace StefanoORCID,Samandari ShimaORCID,Granata MassimoORCID,Amato AlexORCID,Caminale MichaelORCID,Michel Christophe,Gemme GianlucaORCID,Pinard Laurent,Canepa MaurizioORCID,Magnozzi MicheleORCID

Abstract

Abstract Thermal annealing plays a key role in optimizing the properties of amorphous optical coatings. In the field of gravitational wave detection (GWD), however, the effects of annealing protocols on the interferometry mirror coatings have been explored primarily by ex post analysis. As a result, the dynamics of the coatings properties during annealing is still poorly known, potentially leading to suboptimal performance. Here, using real-time, in situ spectroscopic ellipsometry (SE) we have tracked the refractive index and thickness of a titania-tantala coating during controlled annealing. We have tested the material and the annealing protocol used in current GWD mirrors. The annealing cycle consisted of a heating ramp from room temperature to 500 C, followed by a 10-h plateau at the same temperature and the final cooling ramp. SE measurements have been run continuously during the entire cycle. Significant variations in the thickness and refractive index, which accompany the coating structural relaxation, have been recorded during the heating ramp. These variations start around 200 C, slightly above the deposition temperature, and show an increased rate in the range 250 C–350 C. A smaller, continuous evolution has been observed during the 10-h high-temperature plateau. The results offer suggestions to modify the current annealing protocol for titania-tantala coatings, for example by increasing the time duration of the high-temperature plateau. They also suggest an increase in the substrate temperature at deposition. The approach presented here paves the way for systematic, real-time investigations to clarify how the annealing parameters shape the properties of optical coatings, and can be leveraged to define and optimize the annealing protocol of new candidate materials for GWD mirrors.

Funder

Einstein Telescope Infrastructure Consortium

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3