Abstract
Abstract
We propose a new method for detecting high-frequency gravitational waves (GWs) using high-energy pulsed lasers. Through the inverse Gertsenshtein effect, the interaction between a GW and the laser beam results in the creation of an electromagnetic signal. The latter can be detected using single-photon counting techniques. We compute the minimal strain of a detectable GW which only depends on the laser parameters. We find that a resonance occurs in this process when the frequency of the GW is twice the frequency of the laser. With this method, the frequency range 1013–1019 Hz is explored non-continuously for strains
h
≳
10
−
20
for current laser systems and can be extended to
h
≳
10
−
26
with future generation facilities.
Subject
Physics and Astronomy (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献