The transformation of the rotational energy of a Kerr black hole

Author:

Zhang Shu-RuiORCID,Prakapenia Mikalai

Abstract

Abstract This paper analyzes the feedback of the rotational energy extraction from a Kerr black hole (BH) by the ‘ballistic method’, i.e. the test particle decay in the BH ergosphere pioneered by Roger Penrose. The focus is on the negative energy counterrotating particles (which can be massive or massless) going in towards the horizon, and the feedback on the BH irreducible mass is assessed. Generally, the change in irreducible mass is a function of the conserved quantities of the particle. For an extreme Kerr BH and in the limit μ 1 / M 0 , all the reduced transformable energy goes into the irreducible mass (i.e. Δ M irr / | E 1 | ), resulting in high irreversibility. The amount of extracted energy from the BH using test particles is much lower than the change of transformable energy. For non-extreme Kerr BHs, the effective potential of particle motion on the equatorial plane in Kerr spacetime is analyzed, and it is demonstrated that the Penrose process can only be undergone by BHs with a dimensionless spin a ^ > 1 / 2 if the decay point coincides with the turning point. Based on that, the lower limit of the change in irreducible mass is provided as a function of the dimensionless spin of the BH. The significance of the increase in the irreducible mass of the BH during the energy extraction process is generally and concisely illustrated by introducing the concept of transformable energy of the BH. The feedback from the Penrose process on the irreducible mass demonstrates the irreversibility of energy extraction and highlights that the total amount of energy that can be extracted from a BH is less than previously anticipated.

Funder

China Scholarship Council

Publisher

IOP Publishing

Reference34 articles.

1. Ergomagnetosphere, ejection disc, magnetopause in M87 - I. Global flow of mass, angular momentum, energy and current;Blandford;Mon. Not. R. Astron. Soc.,2022

2. General properties of the Penrose process with neutral particles in the equatorial plane;Zaslavskii,2023

3. Gravitational field of a spinning mass as an example of algebraically special metrics;Kerr;Phys. Rev. Lett.,1963

4. Global structure of the kerr family of gravitational fields;Carter;Phys. Rev.,1968

5. Black holes, gravitational waves and cosmology: an introduction to current research;Rees;Top. Astrophys. Space Phys.,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3