Detection of anomalies amongst LIGO’s glitch populations with autoencoders

Author:

Laguarta Paloma,van der Laag Robin,Lopez MelissaORCID,Dooney Tom,Miller Andrew LORCID,Schmidt Stefano,Cavaglia MarcoORCID,Caudill Sarah,Driessens Kurt,Karel Joël,Lenders Roy,Van Den Broeck Chris

Abstract

Abstract Gravitational wave (GW) interferometers are able to detect a change in distance of ~1/10 000th the size of a proton. Such sensitivity leads to large rates of non-gaussian, transient bursts of noise, also known as glitches, which hinder the detection and parameter estimation of short- and long-lived GW signals in the main detector strain. Glitches, come in a wide range of frequency-amplitude-time morphologies and may be caused by environmental or instrumental processes, so a key step towards their mitigation is to understand their population. Current approaches for their identification use supervised models to learn their morphology in the main strain with a fixed set of classes, but do not consider relevant information provided by auxiliary channels that monitor the state of the interferometers. In this work, we present an unsupervised algorithm to find anomalous glitches. Firstly, we encode a subset of auxiliary channels from Laser Interferometer Gravitational-Wave Observatory Livingston in the fractal dimension (FD), which measures the complexity of the signal. For this aim, we speed up the fractal dimension calculation to encode 1 h of data in 11 s. Secondly, we learn the underlying distribution of the data using an autoencoder with cyclic periodic convolutions. In this way, we learn the underlying distribution of glitches and we uncover unknown glitch morphologies, and overlaps in time between different glitches and misclassifications. This led to the discovery of 6.6 % anomalies in the input data. The results of this investigation stress the learnable structure of auxiliary channels encoded in FD and provide a flexible framework for glitch discovery.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3