A machine learning ensemble approach for predicting solar-sensitive hybrid photocatalysts on hydrogen evolution

Author:

Bakır RezanORCID,Orak Ceren,Yüksel Aslı

Abstract

Abstract Hydrogen, as the lightest and most abundant element in the universe, has emerged as a pivotal player in the quest for sustainable energy solutions. Its remarkable properties, such as high energy density and zero emissions upon combustion, make it a promising candidate for addressing the pressing challenges of climate change and transitioning towards a clean and renewable energy future. In an effort to improve efficiency and reduce experimental costs, we adopted machine learning techniques in this study. Our focus turned to predictive analyses of hydrogen evolution values using three photocatalysts, namely, graphene-supported LaFeO3 (GLFO), graphene-supported LaRuO3 (GLRO), and graphene-supported BiFeO3 (GBFO), examining their correlation with varying levels of pH, catalyst amount, and H2O2 concentration. To achieve this, a diverse range of machine learning models are used, including Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), XGBoost, Gradient Boosting, and AdaBoost—each bringing its strengths to the predictive modeling arena. An important step involved combining the most effective models—Random Forests, Gradient Boosting, and XGBoost—into an ensemble model. This collaborative approach aimed to leverage their collective strengths and improve overall predictability. The ensemble model emerged as a powerful tool for understanding photocatalytic hydrogen evolution. Standard metrics were employed to assess the performance of our ensemble prediction model, encompassing R squared, Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean Absolute Error (MAE). The yielded results showcase exceptional accuracy, with R squared values of 96.9%, 99.3%, and 98% for GLFO, GBFO, and GLRO, respectively. Moreover, our model demonstrates minimal error rates across all metrics, underscoring its robust predictive capabilities and highlighting its efficacy in accurately forecasting the intricate relationships between GLFO, GBFO, and GLRO values and their influencing factors.

Publisher

IOP Publishing

Reference37 articles.

1. Visible light driven LaFeO3 nano sphere/RGO composite photocatalysts for efficient water decomposition reaction;Acharya;Catal. Today,2020

2. Interpretation of nonlinear relationships between process variables by use of random forests;Auret;Miner. Eng.,2012

3. Using transfer learning technique as a feature extraction phase for diagnosis of cataract disease in the eye;Bakir

4. Evaluating the impact of tuned pre-trained architectures’ feature maps on deep learning model performance for tomato disease detection;Bakır;Multimedia Tools Appl.,2023

5. DroidEncoder: malware detection using auto-encoder based feature extractor and machine learning algorithms;Bakır;Comput. Electr. Eng.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3