The iteration formula of (n, 2, d) full-correlated multi-component Bell function and its applications

Author:

Meng Hui-XianORCID,Zhang Yu,Fan Xing-Yan,Zhou Jie,Shang Wei-Min,Chen Jing-LingORCID

Abstract

Abstract No matter for a scientific or technological reason, constructing Bell inequalities for multi-partite and high-dimensional systems is a significant task. The Mermin-Ardehali-Belinskiĭ-Klyshko (MABK) inequality is expressed in the form of iteration formula and correlation functions, and is the generalization of the Clauser-Horne-Shimony-Holt (CHSH) inequality to multi-partite cases. In the sense of detecting the nonlocality of the noisy maximally entangled states with the most white noises for the corresponding quantum system, the Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality, expressed in the joint probabilities form, is the high-dimensional analogue of the Clauser-Horne (CH) inequalities on joint probabilities. In the sense of detecting the nonlocality of the noisy Greenberger-Horne-Zeilinger(GHZ) states with the most white noises for the n-qudit system, it is a challenging task to construct the multi-partite analogue of the CGLMP inequality with iteration formula and correlation functions. In this paper, we generalize the multi-component correlation functions [Phys. Rev. A 71, 032 107 (2005)] for bipartite d-dimensional systems to n-partite d-dimensional ones, introduce the general full-correlated multi-component Bell function I n , d , and construct the corresponding Bell inequality. By this way, we can reproduce both the CGLMP inequality and the Bell inequality in [Phys. Rev. A 71, 032 107 (2005)] for the case n = 2, and the MABK inequality for the case d = 2. Inspired by the iteration formula form of the MABK inequality, we prove that for prime d the general Bell function I n , d can be reformulated by iterating two Bell functions I n 1 , d . As applications, for prime d, confined to the unbiased symmetric (d × 2)-port beam splitters and the noisy n-qudit GHZ states, we recover the most robust Bell inequalities for small n and d, such as for the (3, 2, 3), (4, 2, 3), (5, 2, 3), and (3, 2, 5) Bell scenarios, with the iteration formula and the most robust Bell inequalities for the (2, 2, d) scenario. This implies that the iteration formula is an efficient way of constructing the multi-partite analogues of the CGLMP inequality with correlation functions. In addition, we also give some new Bell inequalities with the same robustness but inequivalent to the known ones.

Funder

Nankai Zhide Foundations

Beijing Natural Science Foundation

111 Project

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3