Improved harmonic balance method for analyzing asymmetric restoring force functions in nonlinear vibration of mechanical systems

Author:

Mohammadian MostafaORCID,Ismail Gamal MORCID

Abstract

Abstract The non-linear differential equation governing some mechanical systems, such as the non-linear vibrations of FG beams resting on a nonlinear foundation, behaves similarly to the oscillations of a non-linear oscillator with an asymmetric restoring force function that includes both odd and non-odd non-linear terms. The objective of this research is to obtain higher-order approximate analytical solutions for such problems by introducing an enhanced harmonic balance method. By building upon the original problem, two new symmetric systems with odd non-linear terms are introduced, and their higher-order approximate analytical solutions are derived using a novel approach. In proposed method, the restoring force function is represented by its Fourier series expansion. Unlike previous papers, linearizing the equation or taking the first derivative of the Fourier series in the subsequent iteration is unnecessary. However, to enhance the solution’s accuracy, the remaining error from each iteration is utilized in the next one. Finally, by combining the results from the two introduced systems, the analytical period and corresponding periodic solution of the original problem can be obtained. This method is applied to the governing differential equation of FG beams resting on non-linear foundations, a physical non-natural oscillator, and conservative Toda oscillator. The key advantages of this approach are its simplicity and its ability to provide highly precise solutions for both small and large amplitudes in a single iteration.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Periodic Solutions of Strongly Nonlinear Oscillators Using He’s Frequency Formulation;European Journal of Pure and Applied Mathematics;2024-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3