Transport properties in ABC-ABA-ABC trilayer graphene junctions

Author:

El Mouhafid Abderrahim,Hassane Saley Mouhamadou,Jellal AhmedORCID

Abstract

Abstract Trilayer graphene (TLG) consists of three layers of graphene arranged in a particular stacking order. In the case of ABC-ABA-ABC stacking, the layers are arranged in an A-B-C sequence, followed by an A-B-A sequence, and again an A-B-C sequence. This stacking arrangement introduces specific electronic properties and band structures due to the different stacking configurations. We focus on elucidating the transport properties of a p-n-p junction formed with ABC-ABA-ABC stacking TLG. Employing the transfer matrix method and considering continuity conditions at the junction boundaries, we establish transmission and reflection probabilities, along with conductance. Notably, electron transport through the ABC-ABA-ABC junction exhibits Klein tunneling, resulting in substantial conductance even in the absence of a potential barrier V 0. This effect arises from the effective barrier induced by our specific stacking, facilitating the passage of a maximal number of electrons. However, the presence of V 0 diminishes Klein tunneling, leading to conductance minima. Furthermore, our findings highlight that interlayer bias δ induces a hybridization of the linear and parabolic bands of ABA-TLG within the junction, reducing resonances. In cases where δ ≠ 0 and V 0 ≠ 0, we observe a suppression of the gap, contrary to the results obtained in ABC tunneling studies where a gap exists.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of a perpendicular magnetic field on bilayer graphene under dual gating;Physica E: Low-dimensional Systems and Nanostructures;2025-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3