Time evolution of electron distributions to bimodal steady states for electrons dilutely dispersed in theinert gases Ar, Kr, and Xe with deep Ramsauer Townsend minima in themomentum transfer cross section

Author:

Huang Yin,Shizgal BernardORCID

Abstract

Abstract The current paper considers the thermalization of an ensemble of electrons under the influence of an external electric field and dilutely dispersed in one of the inert gas moderators, Argon, Krypton or Xenon for which the electron momentum transfer cross sections have deep Ramsauer-Townsend minima. As a consequence, the steady state electron distribution functions are bimodal over a small range of external electric field strengths. The current work is directed towards the time evolution of the electron distribution function determined from the numerical solution of the Fokker-Planck equation. The kinetic theory of electrons dilutely dispersed in a heat bath of atoms at temperature T b has a very long history. The solution of the Fokker-Planck equation can be expressed as a sum of exponentials of the form e λ n t where λ n are the eigenvalues of the Fokker-Planck operator. Alternatively, a finite difference algorithm is used to solve the time dependent Fokker-Planck equation to give the time dependent electron energy distribution function. We demonstrate the evolution of the initial Maxwellian into a nonequilibrium bimodal distribution which cannot be rationalized with either the Gibbs-Boltzmann entropy or the Tsallis nonextensive entropy. Instead, the time dependent approach of an initial Maxwellian to the bimodal distribution is described in terms of the Kullback-Leibler entropy. We also demonstrate the inapplicability of the Boltzmann entropy nor the Tsallis entropy for a model system with a power law momentum transfer cross section of the form, σ(x) = σ 0/x p , where x = m e v 2 / 2 k B T b is the reduced speed. This model with p = 2 is also employed to demonstrate a steady-state Kappa distribution which features prominently in space physics and other fields. For p > 2, we show distribution functions that increase without bound analogous to runaway electrons. The steady nonequilibrium distributions are interpreted as solutions of a Pearson ordinary differential equation.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3