Abstract
Abstract
An incompressible flow of Casson-Maxwell fluids over stretchable disk rotating with constant angular speed is demonstrated in this research. Buongiorno theory of nanomaterials is utilized in the flow model to reveals the impacts of Brownian movement and thermophoresis. Cattaneo-Christov heat diffusion theory along with variable thermal conductivity is elaborated in the energy equation. The convective boundary condition for thermal analysis is imposed at the disk surface. The governing equations are normalized by means of similarity functions. Numerical approach is adopted to solve the complex non-linear system by Runge–Kutta-Fehlberg (RKF) procedure. The influence of dimensionless variables on velocity, thermal and concentration fields is illustrated through graphs, while the numerical values of thermal and concentration rates are explained in tabular way.
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献