Analysis of a time-dependent memristor-based chaotic system and its application in image encryption

Author:

Xiong LiORCID,Wang Yue,An XinleiORCID

Abstract

Abstract Compared with ordinary chaotic systems, memristor-based chaotic systems have more complex dynamic behaviors and are more suitable for image encryption algorithms. In this paper, a four-dimensional chaotic system is constructed by introducing a cubic nonlinear memristor into a three-dimensional chaotic system. Firstly, the dynamic characteristics of the constructed memristor-based chaotic system are analyzed in detail, and the simulation results show that the system has different attractors with different topological structures at different simulation times. Within a fixed simulation time, the system has 15 attractors with different topological structures under different parameter values, and there is a phenomenon of multiple stability in the system, indicating high complexity. Based on the above discoveries, a color image encryption algorithm including scrambling and diffusion is designed. Experimental results show that this algorithm can perfectly hide the information of the plaintext image, and the decrypted image is consistent with the plaintext image. Finally, the security of the algorithm is analyzed by using key space and so on. The analysis results indicate that the encryption algorithm designed in this paper can effectively resist external attacks and has high security.

Funder

Open Project of State Key Laboratory of Integrated Chips and Systems

Natural Science Foundation of Gansu Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference46 articles.

1. Analysis and implementation of memristor chaotic circuit;Bao;Acta Phys. Sin.,2011

2. The missing memristor found;Strukov;Nature,2009

3. Analysis and FPGA implementation of a Memristor chaotic system with extreme multistability;Zhang;Acta Phys. Sin.,2022

4. A novel five-dimensional memristive hyperchaotic system with extreme multistability;Li;Journal of Harbin Institute of Technology,2022

5. Analysis and implementation of simple four-dimensional memristive chaotic system with infinite coexisting attractors;Qin;Acta Physica Sinica,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3