Simulation study of the light collection efficiency and the dependency on position resolution in plastic scintillator-based muography detectors

Author:

Wang Z.,Pan Z.W.,Chen Z.,He Z.Y.,Lin Z.B.,Yang T.Y.,Yuan Y.,Wang Y.,Zhang Z.Y.,Xie F.,Liu J.D.,Liu S.B.,Ye B.J.

Abstract

Abstract Cosmic-ray muon imaging (muography) has been applied in various fields in recent years, in which plastic scintillators are one of the frequently selected detectors internationally. Therefore, a triangular scintillator strip based muography detection system has been proposed in the development of the μ Scattering and Transmission imaging faCility (μSTC). Before the mass production of detector units, this work studied the impacts of multiple factors on the light collection efficiency (LCE) and the position resolution (σ) of plastic scintillators. These factors include configurations of wavelength shifting (WLS) fibers, fiber grooves on scintillators, coupling optical glues and silicon photomultiplier (SiPM) readout mode. According to the simulated results, an empirical formula was proposed to quantitatively describe the relation between the LCE and σ, which has seldom been studied before. In this formula, σ reduces as a power-law function of the LCE. The SiPM readout mode (single-end or double-end output) and fiber groove treatments show no significant influence on the  σ-LCE relation. LCE variations due to different factors lead to a difference in σ of less than 0.2 mm in the whole range of LCE. Accordingly, these factors are nearly equivalent in the improvement of detector position resolution. In comparison, the muon hit position reconstruction method nearly halves the σ after using angular and gap corrections. Thus, a better reconstruction method shows greater importance than the efforts made to increase LCEs. The simulation study in this work will provide good references for the construction of plastic scintillators of the μSTC platform in the near future.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3