Power law decay of stored pattern stability in sparse Hopfield neural networks

Author:

Fang Fei,Yang Zhou,Wang Sheng-Jun

Abstract

Abstract Hopfield neural networks on scale-free networks display the power law relation between the stability of patterns and the number of patterns. The stability is measured by the overlap between the output state and the stored pattern which is presented to a neural network. In simulations the overlap declines to a constant by a power law decay. Here we provide the explanation for the power law behavior through the signal-to-noise ratio analysis. We show that on sparse networks storing a plenty of patterns the stability of stored patterns can be approached by a power law function with the exponent −0.5. There is a difference between analytic and simulation results that the analytic results of overlap decay to 0. The difference exists because the signal and noise term of nodes diverge from the mean-field approach in the sparse finite size networks.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3