Trailing-edge fringes enable robust aerodynamic force production and noise suppression in an owl wing model

Author:

Rong JiaxinORCID,Jiang Yajun,Murayama Yuta,Ishibashi Ryoto,Murakami Masashi,Liu HaoORCID

Abstract

Abstract As one of the unique owl-wing morphologies, trailing-edge (TE) fringes are believed to play a critical role in the silent flight of owls and have been widely investigated using idealized single/tandem airfoils. However, the effect of TE fringes and associated mechanisms on the aeroacoustics of owl wings, which feature curved leading edges, wavy TEs, and several feather slots at the wingtips, have not yet been addressed. In this study, we constructed two 3D owl wing models, one with and one without TE fringes, based on the geometric characteristics of a real owl wing. Large-eddy simulations and the Ffowcs Williams‒Hawkings analogy were combined to resolve the aeroacoustic characteristics of the wing models. Comparisons of the computed aerodynamic forces and far-field acoustic pressure levels demonstrate that the fringes on owl wings can robustly suppress aerodynamic noise while sustaining aerodynamic performance comparable to that of a clean wing. By visualizing the near-field flow dynamics in terms of flow and vortex structures as well as flow fluctuations, the mechanisms of TE fringes in owl wing models are revealed. First, the TE fringes on owl wings are reconfirmed to robustly suppress flow fluctuations near the TE by breaking up large TE vortices. Second, the fringes are observed to effectively suppress the shedding of wingtip vortices by mitigating the flow interaction between feathers (feather-slot interaction). These complementary mechanisms synergize to enhance the robustness and effectiveness of the TE fringe effects in owl wing models, in terms of aerodynamic force production and noise suppression. This study thus deepens our understanding of the role of TE fringes in real owl flight gliding and points to the validity and feasibility of employing owl-inspired TE fringes in practical applications of low-noise fluid machinery.

Funder

Grant-in-Aid for Scientific Research of KAKENHI, Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3