Charge generation by passive plant leaf motion at low wind speeds: design and collective behavior of plant-hybrid energy harvesters

Author:

Meder FabianORCID,Armiento SerenaORCID,Naselli Giovanna AdeleORCID,Mondini AlessioORCID,Speck ThomasORCID,Mazzolai BarbaraORCID

Abstract

Abstract Energy harvesting techniques can exploit even subtle passive motion like that of plant leaves in wind as a consequence of contact electrification of the leaf surface. The effect is strongly enhanced by artificial materials installed as ‘artificial leaves’ on the natural leaves creating a recurring mechanical contact and separation. However, this requires a controlled mechanical interaction between the biological and the artificial component during the complex wind motion. Here, we build and test four artificial leaf designs with varying flexibility and degrees of freedom across the blade operating on Nerium oleander plants. We evaluate the apparent contact area (up to 10 cm2 per leaf), the leaves’ motion, together with the generated voltage, current and charge in low wind speeds of up to 3.3 m s−1 and less. Single artificial leaves produced over 75 V and 1 µA current peaks. Softer artificial leaves increase the contact area accessible for energy conversion, but a balance between softer and stiffer elements in the artificial blade is optimal to increase the frequency of contact-separation motion (here up to 10 Hz) for energy conversion also below 3.3 m s−1. Moreover, we tested how multiple leaves operating collectively during continuous wind energy harvesting over several days achieve a root mean square power of ∼6 µW and are capable to transfer ∼80 µC every 30–40 min to power a wireless temperature and humidity sensor autonomously and recurrently. The results experimentally reveal design strategies for energy harvesters providing autonomous micro power sources in plant ecosystems for example for sensing in precision agriculture and remote environmental monitoring.

Funder

Freiburg Rising Star Academy

H2020 Future and Emerging Technologies

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3