A statistical primer on classical period-finding techniques in astronomy

Author:

Giertych NaomiORCID,Shaban AhmedORCID,Haravu Pragya,P Williams JonathanORCID

Abstract

Abstract The aim of our paper is to investigate the properties of the classical phase-dispersion minimization (PDM), analysis of variance (AOV), string-length (SL), and Lomb–Scargle (LS) power statistics from a statistician’s perspective. We confirm that when the data are perturbations of a constant function, i.e. under the null hypothesis of no period in the data, a scaled version of the PDM statistic follows a beta distribution, the AOV statistic follows an F distribution, and the LS power follows a chi-squared distribution with two degrees of freedom. However, the SL statistic does not have a closed-form distribution. We further verify these theoretical distributions through simulations and demonstrate that the extreme values of these statistics (over a range of trial periods), often used for period estimation and determination of the false alarm probability (FAP), follow different distributions than those derived for a single period. We emphasize that multiple-testing considerations are needed to correctly derive FAP bounds. Though, in fact, multiple-testing controls are built into the FAP bound for these extreme-value statistics, e.g. the FAP bound derived specifically for the maximum LS power statistic over a range of trial periods. Additionally, we find that all of these methods are robust to heteroscedastic noise aimed to mimic the degradation or miscalibration of an instrument over time. Finally, we examine the ability of these statistics to detect a non-constant periodic function via simulating data that mimics a well-detached binary system, and we find that the AOV statistic has the most power to detect the correct period, which agrees with what has been observed in practice.

Funder

National Science Foundation

Publisher

IOP Publishing

Reference73 articles.

1. The first INTEGRAL-OMC catalogue of optically variable sources;Alfonso-Garzón;Astron. Astrophys.,2012

2. A terrestrial planet candidate in a temperate orbit around Proxima Centauri;Anglada-Escudé;Nature,2016

3. On super-novae;Baade;Proc. Natl Acad. Sci.,1934

4. Hubble’s law and the expanding Universe;Bahcall;Proc. Natl Acad. Sci.,2015

5. Assessing the statistical significance of periodogram peaks;Baluev;Mon. Not. R. Astron. Soc.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3