Boundary delineation in transrectal ultrasound images for region of interest of prostate

Author:

Peng TaoORCID,Dong Yan,Di Gongye,Zhao Jing,Li Tian,Ren Ge,Zhang Lei,Cai Jing

Abstract

Abstract Accurate and robust prostate segmentation in transrectal ultrasound (TRUS) images is of great interest for ultrasound-guided brachytherapy for prostate cancer. However, the current practice of manual segmentation is difficult, time-consuming, and prone to errors. To overcome these challenges, we developed an accurate prostate segmentation framework (A-ProSeg) for TRUS images. The proposed segmentation method includes three innovation steps: (1) acquiring the sequence of vertices by using an improved polygonal segment-based method with a small number of radiologist-defined seed points as prior points; (2) establishing an optimal machine learning-based method by using the improved evolutionary neural network; and (3) obtaining smooth contours of the prostate region of interest using the optimized machine learning-based method. The proposed method was evaluated on 266 patients who underwent prostate cancer brachytherapy. The proposed method achieved a high performance against the ground truth with a Dice similarity coefficient of 96.2% ± 2.4%, a Jaccard similarity coefficient of 94.4% ± 3.3%, and an accuracy of 95.7% ± 2.7%; these values are all higher than those obtained using state-of-the-art methods. A sensitivity evaluation on different noise levels demonstrated that our method achieved high robustness against changes in image quality. Meanwhile, an ablation study was performed, and the significance of all the key components of the proposed method was demonstrated.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interactive Ultrasound Prostate Cancer Segmentation using Deep Learning with Principal Curve-based Fine-tuning;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3