3D–2D image registration in the presence of soft-tissue deformation in image-guided transbronchial interventions

Author:

Vijayan RORCID,Sheth N,Mekki L,Lu A,Uneri AORCID,Sisniega AORCID,Magaraggia J,Kleinszig G,Vogt S,Thiboutot J,Lee H,Yarmus L,Siewerdsen J HORCID

Abstract

Abstract Purpose. Target localization in pulmonary interventions (e.g. transbronchial biopsy of a lung nodule) is challenged by deformable motion and may benefit from fluoroscopic overlay of the target to provide accurate guidance. We present and evaluate a 3D–2D image registration method for fluoroscopic overlay in the presence of tissue deformation using a multi-resolution/multi-scale (MRMS) framework with an objective function that drives registration primarily by soft-tissue image gradients. Methods. The MRMS method registers 3D cone-beam CT to 2D fluoroscopy without gating of respiratory phase by coarse-to-fine resampling and global-to-local rescaling about target regions-of-interest. A variation of the gradient orientation ( GO ) similarity metric (denoted G O ) was developed to downweight bone gradients and drive registration via soft-tissue gradients. Performance was evaluated in terms of projection distance error at isocenter (PDEiso). Phantom studies determined nominal algorithm parameters and capture range. Preclinical studies used a freshly deceased, ventilated porcine specimen to evaluate performance in the presence of real tissue deformation and a broad range of 3D–2D image mismatch. Results. Nominal algorithm parameters were identified that provided robust performance over a broad range of motion (0–20 mm), including an adaptive parameter selection technique to accommodate unknown mismatch in respiratory phase. The G O metric yielded median PDEiso = 1.2 mm, compared to 6.2 mm for conventional GO . Preclinical studies with real lung deformation demonstrated median PDEiso = 1.3 mm with MRMS + G O registration, compared to 2.2 mm with a conventional transform. Runtime was 26 s and can be reduced to 2.5 s given a prior registration within ∼5 mm as initialization. Conclusions. MRMS registration via soft-tissue gradients achieved accurate fluoroscopic overlay in the presence of deformable lung motion. By driving registration via soft-tissue image gradients, the method avoided false local minima presented by bones and was robust to a wide range of motion magnitude.

Funder

Siemens Healthineers

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3