Stray neutron radiation exposures from proton therapy: physics-based analytical models of neutron spectral fluence, kerma and absorbed dose

Author:

Shrestha SumanORCID,Newhauser Wayne D,Donahue William PORCID,Pérez-Andújar Angélica

Abstract

Abstract Objective. Patients who receive proton beam therapy are exposed to unwanted stray neutrons. Stray radiations increase the risk of late effects in normal tissues, such as second cancers and cataracts, and may cause implanted devices such as pacemakers to malfunction. Compared to therapeutic beams, little attention has been paid to modeling stray neutron exposures. In the past decade, substantial progress was made to develop semiempirical models of stray neutron dose equivalent, but models to routinely calculate neutron absorbed dose and kerma are still lacking. The objective of this work was to develop a new physics based analytical model to calculate neutron spectral fluence, kerma, and absorbed dose in a water phantom. Approach. We developed the model using dosimetric data from Monte Carlo simulations and neutron kerma coefficients from the literature. The model explicitly considers the production, divergence, scattering, and attenuation of neutrons. Neutron production was modeled for 120–250 MeV proton beams impinging on a variety of materials. Fluence, kerma and dose calculations were performed in a 30 × 180 × 44 cm3 phantom at points up to 43 cm in depth and 80 cm laterally. Main Results. Predictions of the analytical model agreed reasonably with corresponding values from Monte Carlo simulations, with a mean difference in average energy deposited of 20%, average kerma coefficient of 21%, and absorbed dose to water of 49%. Significance. The analytical model is simple to implement and use, requires less configuration data that previously reported models, and is computationally fast. This model appears potentially suitable for integration in treatment planning system, which would enable risk calculations in prospective and retrospective cases, providing a powerful tool for epidemiological studies and clinical trials.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3