T 2 orientation anisotropy mapping of articular cartilage using qMRI

Author:

Leskinen Henri P PORCID,Hänninen Nina EORCID,Nissi Mikko JORCID

Abstract

Abstract Objective. To provide orientation-independent MR parameters potentially sensitive to articular cartilage degeneration by measuring isotropic and anisotropic components of T 2 relaxation, as well as 3D fiber orientation angle and anisotropy via multi-orientation MR scans. Approach. Seven bovine osteochondral plugs were scanned with a high angular resolution of thirty-seven orientations spanning 180° at 9.4 T. The obtained data was fitted to the magic angle model of anisotropic T 2 relaxation to produce pixel-wise maps of the parameters of interest. Quantitative Polarized Light Microscopy (qPLM) was used as a reference method for the anisotropy and fiber orientation. Main results. The number of scanned orientations was found to be sufficient for estimating both fiber orientation and anisotropy maps. The relaxation anisotropy maps demonstrated a high correspondence with qPLM reference measurements of the collagen anisotropy of the samples. The scans also enabled calculating orientation-independent T 2 maps. Little spatial variation was observed in the isotropic component of T 2 while the anisotropic component was much faster in the deep radial zone of cartilage. The estimated fiber orientation spanned the expected 0°–90° in samples that had a sufficiently thick superficial layer. The orientation-independent magnetic resonance imaging (MRI) measures can potentially reflect the true properties of articular cartilage more precisely and robustly. Significance. The methods presented in this study will likely improve the specificity of cartilage qMRI by allowing the assessment of the physical properties such as orientation and anisotropy of collagen fibers in articular cartilage.

Funder

Academy of Finland

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3