Assessment of bubble activity generated by histotripsy combined with echogenic liposomes

Author:

Bhargava Aarushi,Huang Shaoling,McPherson David D,Bader Kenneth BORCID

Abstract

Abstract Objective. Histotripsy is a form of focused ultrasound therapy that uses the mechanical activity of bubbles to ablate tissue. While histotripsy alone degrades the cellular content of tissue, recent studies have demonstrated it effectively disrupts the extracellular structure of pathologic conditions such as venous thrombosis when combined with a thrombolytic drug. Rather than relying on standard administration methods, associating thrombolytic drugs with an ultrasound-triggered echogenic liposome vesicle will enable targeted, systemic drug delivery. To date, histotripsy has primarily relied on nano-nuclei inherent to the medium for bubble cloud generation, and microbubbles associated with echogenic liposomes may alter the histotripsy bubble dynamics. The objective of this work was to investigate the interaction of histotripsy pulse with echogenic liposomes. Approach. Bubble clouds were generated using a focused source in an in vitro model of venous flow. Acoustic emissions generated during the insonation were passively acquired to assess the mechanical activity of the bubble cloud. High frame rate, pulse inversion imaging was used to track the change in echogenicity of the liposomes following histotripsy exposure. Main results. For peak negative pressures less than 20 MPa, acoustic emissions indicative of stable and inertial bubble activity were observed. As the peak negative pressure of the histotripsy excitation increased, harmonics of the excitation were observed in OFP t-ELIP solutions and plasma alone. Additional observations with high frame rate imaging indicated a transition of bubble behavior as the pulse pressure transitioned to shock wave formation. Significance. These observations suggest that a complex interaction between histotripsy pulses and echogenic liposomes that may be exploited for combination treatment approaches.

Funder

NIH R01

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3