Clinical knowledge embedded method based on multi-task learning for thyroid nodule classification with ultrasound images

Author:

Gao Zixiong,Chen YufanORCID,Sun Pengtao,Liu Hongmei,Lu Yao

Abstract

Abstract Objective. Thyroid nodules are common glandular abnormality that need to be diagnosed as benign or malignant to determine further treatments. Clinically, ultrasonography is the main diagnostic method, but it is highly subjective with severe variability. Recently, many deep-learning-based methods have been proposed to alleviate subjectivity and achieve good results yet, these methods often neglect important guidance from clinical knowledge. Our objective is to utilize such guidance for accurate and reliable thyroid nodule classification. Approach. In this study, a multi-task learning model embedded with clinical knowledge of ACR Thyroid Imaging, Reporting and Data System guideline is proposed. The clinical features defined in the guideline have strong correlations with malignancy and they were modeled as tasks alongside the pathological type. Multi-task learning was utilized to exploit the correlations to improve diagnostic performance. To alleviate the impact of noisy labels on clinical features, a loss-weighting strategy was proposed. Five-fold cross-validation was applied to an internal training set of size 4989, and an external test set of size 243 was used for evaluation. Main results. The proposed multi-task learning model achieved an average AUC of 0.901 and an ensemble AUC of 0.917 on the test set, which significantly outperformed the single-task baseline models. Significance. The results indicated that multi-task learning of clinical features can effectively classify thyroid nodules and reveal the possibility of using clinical indicators as auxiliary tasks to improve performance when diagnosing other diseases.

Funder

Guangdong Province Key Laboratory of Computational Science

Science and Technology Program of Guangzhou

China Department of Science and Technology

Construction Project of Shanghai Key Laboratory of Molecular Imaging

Department of Science and Technology of Jilin Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference34 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3