GMAlignNet: multi-scale lightweight brain tumor image segmentation with enhanced semantic information consistency

Author:

Song JianliORCID,Lu Xiaoqi,Gu Yu

Abstract

Abstract Although the U-shaped architecture, represented by UNet, has become a major network model for brain tumor segmentation, the repeated convolution and sampling operations can easily lead to the loss of crucial information. Additionally, directly fusing features from different levels without distinction can easily result in feature misalignment, affecting segmentation accuracy. On the other hand, traditional convolutional blocks used for feature extraction cannot capture the abundant multi-scale information present in brain tumor images. This paper proposes a multi-scale feature-aligned segmentation model called GMAlignNet that fully utilizes Ghost convolution to solve these problems. Ghost hierarchical decoupled fusion unit and Ghost hierarchical decoupled unit are used instead of standard convolutions in the encoding and decoding paths. This transformation replaces the holistic learning of volume structures by traditional convolutional blocks with multi-level learning on a specific view, facilitating the acquisition of abundant multi-scale contextual information through low-cost operations. Furthermore, a feature alignment unit is proposed that can utilize semantic information flow to guide the recovery of upsampled features. It performs pixel-level semantic information correction on misaligned features due to feature fusion. The proposed method is also employed to optimize three classic networks, namely DMFNet, HDCNet, and 3D UNet, demonstrating its effectiveness in automatic brain tumor segmentation. The proposed network model was applied to the BraTS 2018 dataset, and the results indicate that the proposed GMAlignNet achieved Dice coefficients of 81.65%, 90.07%, and 85.16% for enhancing tumor, whole tumor, and tumor core segmentation, respectively. Moreover, with only 0.29 M parameters and 26.88G FLOPs, it demonstrates better potential in terms of computational efficiency and possesses the advantages of lightweight. Extensive experiments on the BraTS 2018, BraTS 2019, and BraTS 2020 datasets suggest that the proposed model exhibits better potential in handling edge details and contour recognition.

Funder

The Fundamental Research Funds for Inner Mongolia University of Science & Technology

Central Government Guides Local Science and Technology Development Fund Project of China

Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3