Unsupervised deep learning-based displacement estimation for vascular elasticity imaging applications

Author:

Karageorgos Grigorios M,Liang Pengcheng,Mobadersany Nima,Gami Parth,Konofagou Elisa E

Abstract

Abstract Objective. Arterial wall stiffness can provide valuable information on the proper function of the cardiovascular system. Ultrasound elasticity imaging techniques have shown great promise as a low-cost and non-invasive tool to enable localized maps of arterial wall stiffness. Such techniques rely upon motion detection algorithms that provide arterial wall displacement estimation. Approach. In this study, we propose an unsupervised deep learning-based approach, originally proposed for image registration, in order to enable improved quality arterial wall displacement estimation at high temporal and spatial resolutions. The performance of the proposed network was assessed through phantom experiments, where various models were trained by using ultrasound RF signals, or B-mode images, as well as different loss functions. Main results. Using the mean square error (MSE) for the training process provided the highest signal-to-noise ratio when training on the B-modes images (30.36 ± 1.14 dB) and highest contrast-to-noise ratio when training on the RF signals (32.84 ± 1.89 dB). In addition, training the model on RF signals demonstrated the capability of providing accurate localized pulse wave velocity (PWV) maps, with a mean relative error (MREPWV) of 3.32 ± 1.80% and an R2 of 0.97 ± 0.03. Finally, the developed model was tested in human common carotid arteries in vivo, providing accurate tracking of the distension pulse wave propagation, with an MREPWV = 3.86 ± 2.69% and R2 = 0.95 ± 0.03. Significance. In conclusion, a novel displacement estimation approach was presented, showing promise in improving vascular elasticity imaging techniques.

Funder

Foundation for the National Institutes of Health

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3