FSE-Net: feature selection and enhancement network for mammogram classification

Author:

Liao CaiqingORCID,Wen Xin,Qi Shuman,Liu Yanan,Cao Rui

Abstract

Abstract Objective. Early detection and diagnosis allow for intervention and treatment at an early stage of breast cancer. Despite recent advances in computer aided diagnosis systems based on convolutional neural networks for breast cancer diagnosis, improving the classification performance of mammograms remains a challenge due to the various sizes of breast lesions and difficult extraction of small lesion features. To obtain more accurate classification results, many studies choose to directly classify region of interest (ROI) annotations, but labeling ROIs is labor intensive. The purpose of this research is to design a novel network to automatically classify mammogram image as cancer and no cancer, aiming to mitigate or address the above challenges and help radiologists perform mammogram diagnosis more accurately. Approach. We propose a novel feature selection and enhancement network (FSE-Net) to fully exploit the features of mammogram images, which requires only mammogram images and image-level labels without any bounding boxes or masks. Specifically, to obtain more contextual information, an effective feature selection module is proposed to adaptively select the receptive fields and fuse features from receptive fields of different scales. Moreover, a feature enhancement module is designed to explore the correlation between feature maps of different resolutions and to enhance the representation capacity of low-resolution feature maps with high-resolution feature maps. Main results. The performance of the proposed network has been evaluated on the CBIS-DDSM dataset and INbreast dataset. It achieves an accuracy of 0.806 with an AUC of 0.866 on the CBIS-DDSM dataset and an accuracy of 0.956 with an AUC of 0.974 on the INbreast dataset. Significance. Through extensive experiments and saliency map visualization analysis, the proposed network achieves the satisfactory performance in the mammogram classification task, and can roughly locate suspicious regions to assist in the final prediction of the entire images.

Funder

Natural Science Foundation of Shanxi Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3