Characterization of breast tissues in density and effective atomic number basis via spectral X-ray computed tomography

Author:

Vrbaški StevanORCID,Arana Peña Lucia MarielORCID,Brombal LucaORCID,Donato SandroORCID,Taibi AngeloORCID,Contillo AdrianoORCID,Longo RenataORCID

Abstract

Abstract Objective. Differentiation of breast tissues is challenging in X-ray imaging because tissues might share similar or even the same linear attenuation coefficients μ. Spectral computed tomography (CT) allows for more quantitative characterization in terms of tissue density (ρ) and effective atomic number (Z eff) by exploiting the energy dependence of μ. The objective of this study was to examine the potential of ρ/Z eff decomposition in spectral breast CT so as to explore the benefits of tissue characterization and improve the diagnostic accuracy of this emerging 3D imaging technique. Approach. In this work, 5 mastectomy samples and a phantom with inserts mimicking breast soft tissues were evaluated in a retrospective study. The samples were imaged at three monochromatic energy levels in the range of 24–38 keV at 5 mGy per scan using a propagation-based phase-contrast setup at SYRMEP beamline at the Italian national synchrotron Elettra. Main results. A custom-made algorithm incorporating CT reconstructions of an arbitrary number of spectral energy channels was developed to extract the density and effective atomic number of adipose, fibro-glandular, pure glandular, tumor, and skin from regions selected by a radiologist. Significance. Preliminary results suggest that, via spectral CT, it is possible to enhance tissue differentiation. It was found that adipose, fibro-glandular and tumorous tissues have average effective atomic numbers (5.94 ± 0.09, 7.03 ± 0.012, and 7.40 ± 0.10) and densities (0.90 ± 0.02, 0.96 ± 0.02, and 1.07 ± 0.03 g cm−3) and can be better distinguished if both quantitative values are observed together.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3