Deep learning-based synthetic dose-weighted LET map generation for intensity modulated proton therapy

Author:

Gao YuanORCID,Chang Chih-Wei,Pan Shaoyan,Peng Junbo,Ma Chaoqiong,Patel Pretesh,Roper Justin,Zhou Jun,Yang XiaofengORCID

Abstract

Abstract The advantage of proton therapy as compared to photon therapy stems from the Bragg peak effect, which allows protons to deposit most of their energy directly at the tumor while sparing healthy tissue. However, even with such benefits, proton therapy does present certain challenges. The biological effectiveness differences between protons and photons are not fully incorporated into clinical treatment planning processes. In current clinical practice, the relative biological effectiveness (RBE) between protons and photons is set as constant 1.1. Numerous studies have suggested that the RBE of protons can exhibit significant variability. Given these findings, there is a substantial interest in refining proton therapy treatment planning to better account for the variable RBE. Dose-average linear energy transfer (LETd) is a key physical parameter for evaluating the RBE of proton therapy and aids in optimizing proton treatment plans. Calculating precise LETd distributions necessitates the use of intricate physical models and the execution of specialized Monte-Carlo simulation software, which is a computationally intensive and time-consuming progress. In response to these challenges, we propose a deep learning based framework designed to predict the LETd distribution map using the dose distribution map. This approach aims to simplify the process and increase the speed of LETd map generation in clinical settings. The proposed CycleGAN model has demonstrated superior performance over other GAN-based models. The mean absolute error (MAE), peak signal-to-noise ratio and normalized cross correlation of the LETd maps generated by the proposed method are 0.096 ± 0.019 keV μm−1, 24.203 ± 2.683 dB, and 0.997 ± 0.002, respectively. The MAE of the proposed method in the clinical target volume, bladder, and rectum are 0.193 ± 0.103, 0.277 ± 0.112, and 0.211 ± 0.086 keV μm−1, respectively. The proposed framework has demonstrated the feasibility of generating synthetic LETd maps from dose maps and has the potential to improve proton therapy planning by providing accurate LETd information.

Funder

National Institutes of Health

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3