Post-administration dosimetry in yttrium-90 radioembolization through micro-CT imaging of radiopaque microspheres in a porcine renal model

Author:

Henry E Courtney,Strugari Matthew,Mawko George,Brewer Kimberly D,Abraham Robert,Kappadath S CheenuORCID,Syme AlasdairORCID

Abstract

Abstract The purpose of this study is to perform post-administration dosimetry in yttrium-90 radioembolization through micro-CT imaging of radiopaque microsphere distributions in a porcine renal model and explore the impact of spatial resolution of an imaging system on the extraction of specific dose metrics. Following the administration of radiopaque microspheres to the kidney of a hybrid farm pig, the kidney was explanted and imaged with micro-CT. To produce an activity distribution, 400 MBq of yttrium-90 activity was distributed throughout segmented voxels of the embolized vasculature based on an established linear relationship between microsphere concentration and CT voxel value. This distribution was down-sampled to coarser isotropic grids ranging in voxel size from 2.5 to 15 mm to emulate nominal resolutions comparable to those found in yttrium-90 PET and Bremsstrahlung SPECT imaging. Dose distributions were calculated through the convolution of activity distributions with dose-voxel kernels generated using the GATE Monte Carlo toolkit. Contours were computed to represent normal tissue and target volumes. Dose-volume histograms, dose metrics, and dose profiles were compared to a ground truth dose distribution computed with GATE. The mean dose to the target for all studied voxel sizes was found to be within 5.7% of the ground truth mean dose. D 70 was shown to be strongly correlated with image voxel size of the dose distribution (r 2 = 0.90). D 70 is cited in the literature as an important dose metric and its dependence on voxel size suggests higher resolution dose distributions may provide new perspectives on dose-response relationships in yttrium-90 radioembolization. This study demonstrates that dose distributions with large voxels incorrectly homogenize the dose by attributing escalated doses to normal tissues and reduced doses in high-dose target regions. High-resolution micro-CT imaging of radiopaque microsphere distributions can provide increased confidence in characterizing the absorbed dose heterogeneity in yttrium-90 radioembolization.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference44 articles.

1. The physics of radioembolization;Bastiaannet;EJNMMI Phys.,2018

2. Global trends and predictions in hepatocellular carcinoma mortality;Bertuccio;J. Hepatol.,2017

3. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions--radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee;Bolch;J. Nucl. Med.,1998

4. The blood supply of neoplasms in the liver;Breedis;Am. J. Pathol.,1954

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3