Multi-task generative adversarial network for retinal optical coherence tomography image denoising

Author:

Xie Qiaoxue,Ma Zongqing,Zhu Lianqing,Fan Fan,Meng Xiaochen,Gao Xinxiao,Zhu Jiang

Abstract

Abstract Objective. Optical coherence tomography (OCT) has become an essential imaging modality for the assessment of ophthalmic diseases. However, speckle noise in OCT images obscures subtle but important morphological details and hampers its clinical applications. In this work, a novel multi-task generative adversarial network (MGAN) is proposed for retinal OCT image denoising. Approach. To strengthen the preservation of retinal structural information in the OCT denoising procedure, the proposed MGAN integrates adversarial learning and multi-task learning. Specifically, the generator of MGAN simultaneously undertakes two tasks, including the denoising task and the segmentation task. The segmentation task aims at the generation of the retinal segmentation map, which can guide the denoising task to focus on the retina-related region based on the retina-attention module. In doing so, the denoising task can enhance the attention to the retinal region and subsequently protect the structural detail based on the supervision of the structural similarity index measure loss. Main results. The proposed MGAN was evaluated and analyzed on three public OCT datasets. The qualitative and quantitative comparisons show that the MGAN method can achieve higher image quality, and is more effective in both speckle noise reduction and structural information preservation than previous denoising methods. Significance. We have presented a MGAN for retinal OCT image denoising. The proposed method provides an effective way to strengthen the preservation of structural information while suppressing speckle noise, and can promote the OCT applications in the clinical observation and diagnosis of retinopathy.

Funder

National Natural Science Foundation of China

Scientific Research Fund Project of Beijing Information Science and Technology University

Research Project of the Beijing Municipal Education Commission

Beijing Natural Science Foundation

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3