On the implementation of acollinearity in PET Monte Carlo simulations

Author:

Toussaint MaximeORCID,Loignon-Houle FrancisORCID,Auger Étienne,Lapointe Gabriel,Dussault Jean-Pierre,Lecomte RogerORCID

Abstract

Abstract Objective. Acollinearity of annihilation photons (APA) introduces spatial blur in positron emission tomography (PET) imaging. This phenomenon increases proportionally with the scanner diameter and it has been shown to follow a Gaussian distribution. This last statement can be interpreted in two ways: the magnitude of the acollinearity angle, or the angular deviation of annihilation photons from perfect collinearity. As the former constitutes the partial integral of the latter, a misinterpretation could have significant consequences on the resulting spatial blurring. Previous research investigating the impact of APA in PET imaging has assumed the Gaussian nature of its angular deviation, which is consistent with experimental results. However, a comprehensive analysis of several simulation software packages for PET data acquisition revealed that the magnitude of APA was implemented as a Gaussian distribution. Approach. We quantified the impact of this misinterpretation of APA by comparing simulations obtained with GATE, which is one of these simulation programs, to an in-house modification of GATE that models APA deviation as following a Gaussian distribution. Main results. We show that the APA misinterpretation not only alters the spatial blurring profile in image space, but also considerably underestimates the impact of APA on spatial resolution. For an ideal PET scanner with a diameter of 81 cm, the APA point source response simulated under the first interpretation has a cusp shape with 0.4 mm FWHM. This is significantly different from the expected Gaussian point source response of 2.1 mm FWHM reproduced under the second interpretation. Significance. Although this misinterpretation has been found in several PET simulation tools, it has had a limited impact on the simulated spatial resolution of current PET scanners due to its small magnitude relative to the other factors. However, the inaccuracy it introduces in estimating the overall spatial resolution of PET scanners will increase as the performance of newer devices improves.

Funder

Natural Sciences and Engineering Research Council of Canada

Acuity-QC Consortium

Réseau de Bio-Imagerie du Quebec

Publisher

IOP Publishing

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3