FLASH radiotherapy sparing effect on the circulating lymphocytes in pencil beam scanning proton therapy: impact of hypofractionation and dose rate

Author:

Galts Antje,Hammi AbdelkhalekORCID

Abstract

Abstract Purpose. The sparing effect of ultra-high dose rate (FLASH) radiotherapy has been reported, but its potential to mitigate depletion of circulating blood and lymphocytes (CL) has not been investigated in pencil-beam scanning-based (PBS) proton therapy, which could potentially reduce the risk of radiation-induced lymphopenia. Material and methods. A time-dependent framework was used to score the dose to the CL during the course of radiotherapy. For brain patients, cerebral vasculatures were semi-automatic segmented from 3T MR-angiography data. A dynamic beam delivery system was developed capable of simulating spatially varying instantaneous dose rates of PBS treatment plans, and which is based on realistic beam delivery parameters that are available clinically. We simulated single and different hypofractionated PBS intensity modulated proton therapy (IMPT) FLASH schemes using 600 nA beam current along with conventionally fractionated IMPT treatment plan at 2 nA beam current. The dosimetric impact of treatment schemes on CL was quantified, and we also evaluated the depletion in subsets of CL based on their radiosensitivity. Results. The proton FLASH sparing effect on CL was observed. In single-fraction PBS FLASH, just 1.5% of peripheral blood was irradiated, whereas hypofractionated FLASH irradiated 7.3% of peripheral blood. In contrast, conventional fractionated IMPT exposed 42.4% of peripheral blood to radiation. PBS FLASH reduced the depletion rate of CL by 69.2% when compared to conventional fractionated IMPT. Conclusion. Our dosimetric blood flow model provides quantitative measures of the PBS FLASH sparing effect on the CL in radiotherapy for brain cancer. FLASH Single treatment fraction offers superior CL sparing when compared to hypofractionated FLASH and conventional IMPT, supporting assumptions about reducing risks of lymphopenia compared to proton therapy at conventional dose rates. The results also indicate that faster conformal FLASH delivery, such as passive patient-specific energy modulation, may further enhance the sparing of the immune system.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3