Modeling the propagation of tumor fronts with shortest path and diffusion models—implications for the definition of the clinical target volume

Author:

Bortfeld Thomas,Buti Gregory

Abstract

Abstract Objective. The overarching objective is to make the definition of the clinical target volume (CTV) in radiation oncology less subjective and more scientifically based. The specific objective of this study is to investigate similarities and differences between two methods that model tumor spread beyond the visible gross tumor volume (GTV): (1) the shortest path model, which is the standard method of adding a geometric GTV-CTV margin, and (2) the reaction-diffusion model. Approach. These two models to capture the invisible tumor ‘fire front’ are defined and compared in mathematical terms. The models are applied to example cases that represent tumor spread in non-uniform and anisotropic media with anatomical barriers. Main results. The two seemingly disparate models bring forth traveling waves that can be associated with the front of tumor growth outward from the GTV. The shape of the fronts is similar for both models. Differences are seen in cases where the diffusive flow is reduced due to anatomical barriers, and in complex spatially non-uniform cases. The diffusion model generally leads to smoother fronts. The smoothness can be controlled with a parameter defined by the ratio of the diffusion coefficient and the proliferation rate. Significance. Defining the CTV has been described as the weakest link of the radiotherapy chain. There are many similarities in the mathematical description and the behavior of the common geometric GTV-CTV expansion method, and the definition of the CTV tumor front via the reaction-diffusion model. Its mechanistic basis and the controllable smoothness make the diffusion model an attractive alternative to the standard GTV-CTV margin model.

Funder

National Cancer Institute

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference29 articles.

1. From patient-specific mathematical neuro-oncology to precision medicine;Baldock;Front. Oncol.,2013

2. The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas;Burgess;J. Neuropathol. Exp. Neurol.,1997

3. Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts;Ebert;Physica D,2000

4. Grand challenges for medical physics in radiation oncology;Fiorino;Radiother. Oncol.,2020

5. Delineation of the primary tumour clinical target volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines;Grégoire;Radiother. Oncol.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3