Feature selection based on unsupervised clustering evaluation for predicting neoadjuvant chemoradiation response for patients with locally advanced rectal cancer

Author:

Chen HaoORCID,Li Xing,Pan Xiaoying,Qiang Yongqian,Qi X Sharon

Abstract

Abstract Accurate response prediction allows for personalized cancer treatment of locally advanced rectal cancer (LARC) with neoadjuvant chemoradiation. In this work, we designed a convolutional neural network (CNN) feature extractor with switchable 3D and 2D convolutional kernels to extract deep learning features for response prediction. Compared with radiomics features, convolutional kernels may adaptively extract local or global image features from multi-modal MR sequences without the need of feature predefinition. We then developed an unsupervised clustering based evaluation method to improve the feature selection operation in the feature space formed by the combination of CNN features and radiomics features. While normal process of feature selection generally includes the operations of classifier training and classification execution, the process needs to be repeated many times after new feature combinations were found to evaluate the model performance, which incurs a significant time cost. To address this issue, we proposed a cost effective process to use a constructed unsupervised clustering analysis indicator to replace the classifier training process by indirectly evaluating the quality of new found feature combinations in feature selection process. We evaluated the proposed method using 43 LARC patients underwent neoadjuvant chemoradiation. Our prediction model achieved accuracy, area-under-curve (AUC), sensitivity and specificity of 0.852, 0.871, 0.868, and 0.735 respectively. Compared with traditional radiomics methods, the prediction models (AUC = 0.846) based on deep learning-based feature sets are significantly better than traditional radiomics methods (AUC = 0.714). The experiments also showed following findings: (1) the features with higher predictive power are mainly from high-order abstract features extracted by CNN on ADC images and T2 images; (2) both ADC_Radiomics and ADC_CNN features are more advantageous for predicting treatment responses than the radiomics and CNN features extracted from T2 images; (3) 3D CNN features are more effective than 2D CNN features in the treatment response prediction. The proposed unsupervised clustering indicator is feasible with low computational cost, which facilitates the discovery of valuable solutions by highlighting the correlation and complementarity between different types of features.

Funder

the Key Research and Development Projects of Shaanxi

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference38 articles.

1. Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI;Andreopoulos;Med. Image Anal.,2008

2. Rectal cancer, version 2.2018, NCCN clinical practice guidelines in oncology;Benson;J. Natl Comprehensive Cancer Netw.,2018

3. Chemotherapy with preoperative radiotherapy in rectal cancer;Bosset;New Engl. J. Med.,2006

4. Diffusion weighted imaging improves diagnostic ability of MRI for determining complete response to neoadjuvant therapy in locally advanced rectal cancer;Chandramohan;Eur. J. Radiol. Open,2020

5. Diffusion weighted imaging combined with magnetic resonance conventional sequences for the diagnosis of rectal cancer;Cong;Zhongguo yi xue ke xue Yuan xue bao Acta Acad. Med. Sinicae,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3